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’ INTRODUCTION

The Soai reaction has continued to fascinate scientists since
the publication of the first report proving strong enantioselective
autocatalysis in this system.1 Following the initial report on
asymmetric amplification, a previously unobserved phenomenon
termed absolute asymmetric synthesis, which is a form of chiral
symmetry breaking resulting in the formation of macroscopically
detectable enantiomeric excess (ee) of a chiral product in a
chemical reaction under completely nonchiral conditions, was also
found in this reaction.2�5 The chemical reaction is a carbon�
carbon bond formation process yielding a chiral alcohol starting
from a pyrimidinyl carbaldehyde and a dialkyl zinc compound
under strictly air- and water-free conditions:

Studying the mechanism of the Soai reaction and symmetry
breaking has drawn a lot of recent scientific attention as it has very
important implications for the origin of biological chirality.6�34

Absolute asymmetric synthesis, as was also shown by another
known example featuring chiral octahedral cobalt complexes,35 is
stochastic in nature: the magnitude of produced ee and the
identity of excess enantiomer vary unpredictably in any single
experiment but obey probabilistic laws for a sufficiently high
number of repetitions.19,36�38 The reported experimental
results for the absolute asymmetric synthesis variant of the
Soai reaction3 are shown in Figure 1 using the distribution
function, which is understood to be a representation much

superior to histograms.37,38 Such phenomena cannot be inter-
preted using the usual deterministic approach to chemical
kinetics, which never predicts the formation of significant ee
from achiral initial conditions.19,36�38

The stochastic approach to chemical kinetics has been used in
a few initial attempts to interpret the final distribution of
enantiomers in the Soai reaction.19,29,36,37 These mostly used
the continuous time discrete state (CDS) approach, the theory of
which had been developed earlier.38�40 TheCDS approach is not
simply an alternative to usual chemical kinetics, but a much more

Figure 1. Experimentally observed and theoretically predicted prob-
ability distributions of enantiomeric excesses in the Soai reaction.
Experimental data from Soai et al.3
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ABSTRACT: The experimentally observed distribution of en-
antiomers in the Soai reaction is interpreted in this Article on the
basis of a chemical mechanism using a newly developed stochastic
kinetic method, accelerated Monte Carlo simulation combined
with deterministic continuation and symmetrization. The method
is in principle suitable for handling large mechanisms with realistic
particle numbers and could be useful for any case where the kinetics
of a process shows inherent random fluctuations. The mechanism
shows how a slow initial reaction combined with efficient and
highly enantioselective autocatalysis can give rise to chiral sym-
metry breaking under completely nonchiral external conditions.
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general theory that entirely embodies deterministic kinetics as a
limiting case for high particle numbers.38,41 The initial stochastic
attempts were either not based on any chemical mechanisms,19,29

or the chemical mechanisms involved no intermediates at all.36,37

The Soai reaction is muchmore complicated, but CDS stochastic
calculations with chemically reasonable amounts of material were
not possible primarily because of computational limitations.38,42

This work reports a new method for the stochastic handling of
complex mechanisms, and, as a proof of concept, predictions are
calculated for the final distribution of enantiomers based on a
chemical mechanism.

’RESULTS AND DISCUSSION

The stochastic kinetic method developed in this work has four
cornerstones: the use of Monte Carlo simulations, accelerating
them by the CDS analogue of the pre-equilibrium approxima-
tion, deterministic continuation, and symmetrization. These
aspects will be explained in some detail, and a code written in
Matlab43 is deposited in the Supporting Information.

The chemical mechanism developed in this work for the Soai
reaction is a modified version of the model published by Buhse,8

which also served as a basis for a deterministic study about
oscillatory symmetry breaking.23 Models have already been
developed for the Soai reaction that may be more satisfactory in
some respect,12,13,17,33 but there is no general agreement in this
matter. The essence of our model (Table 1) is the initial
formation of the chiral zinc alcoholate COZn from the reactants
carbaldehyde CHO and dialkyl zinc Zn, with the later inter-
vention of dimolecular and trimolecular species (COZn)2 and
(COZn)2�CHO, which open an enantioselective pathway
of the formation of COZn (notations are the same as in ref 8).
The full mechanism contains 10 species and 18 elementary
reactions.

Monte Carlo simulations are used in many fields of science,
but rarely in chemical kinetics.44�46 In this method, the prob-
abilities of all elementary reactions are calculated from the rate
equation, and a random number is generated to decide which of
these reaction steps occurs next, and than the procedure is
repeated. The initial “coin tossing” character of the Soai reaction
has been demonstrated by empirical calculations.24 The random
number generator of the software Matlab has been carefully
tested in this work (Figures S1 and S2 in the Supporting
Information), because any error in this would cause a major flaw
in the simulations.

Initial Monte Carlo simulations were extremely slow and
could only be used for up to dozens of product molecules.
Testing the algorithm (Table S1 in the Supporting Information)
revealed that more than 99% of steps taken were forward and
backward steps in the dimerization, which has the chemical
implication that this reaction can be treated as a fast equilibrium.
The problem was solved by developing a stochastic equivalent of
the pre-equilibrium approach. Instead of using the molecule
numbers for COZn and (COZn)2 separately, they were com-
bined into a single variable:

m ¼ COZn þ 2� ðCOZnÞ2 ð2Þ
Here, COZn and (COZn)2 in italics mean molecule numbers
for species COZn and (COZn)2, respectively, whereas m is
their sumweighted by the number of zinc atoms present. When
calculating the probabilities of individual reaction steps in
the simulation, COZn and (COZn)2 were obtained as the

equilibrium expectations of species number using the following
formulas:

ðCOZnÞ2 ¼
∑

ºm=2ß

i¼0
i

m!
ðm� 2iÞ!i!2i

k2
k�2NAV

� �i

∑
ºm=2ß

i¼0

m!
ðm� 2iÞ!i!2i

k2
k�2NAV

� �i

COZn ¼ m� 2� ðCOZnÞ2 ð3Þ

Here, ! denotes factorial, ºm/2ß denotes the floor function of
m/2 (the largest integer less than or equal tom/2),NA is Avogadro’s
constant, andV is the volume of the system. An equivalent formula
was published for the stochastic description of the 2A h B
equilibrium,47 but it is also readily derived using the concept
of partition functions from statistical thermodynamics (notes in
the Supporting Information). With this acceleration, the Monte
Carlo simulation could be carried out up to 10 000 product
molecules.

Simulations up to 1019molecules (0.1mmol) were still unviable,
and a technique termed deterministic continuation was developed
to solve this problem. TheMonte Carlo simulations up to 10 000
molecules were followed by calculations based on the usual
differential equations of deterministic kinetics. The molecule
numbers for the intermediates (COZn)2 and (COZn)2�CHO
were always orders of magnitude lower than for CHO, Zn, and
COZn. Therefore, the steady-state assumption for these two
intermediates could be used as the essential concept behind the

Table 1. Elementary Reactions, Rate Constants, and Param-
eter Values in the Proposed Mechanisma

reaction

rate

constant

CHO þ Zn f ðRÞ-COZn k1

CHO þ Zn f ðSÞ-COZn k1

ðRÞ-COZn þ ðRÞ-COZn f ðRÞðRÞ-ðCOZnÞ2 k2

ðRÞðRÞ-ðCOZnÞ2 f ðRÞ-COZn þ ðRÞ-COZn k�2

ðSÞ-COZn þ ðSÞ-COZn f ðSÞðSÞ-ðCOZnÞ2 k2

ðSÞðSÞ-ðCOZnÞ2 f ðSÞ-COZn þ ðSÞ-COZn k�2

ðRÞ-COZn þ ðSÞ-COZn f ðRÞðSÞ-ðCOZnÞ2 α � k2

ðRÞðSÞ-ðCOZnÞ2 f ðRÞ-COZn þ ðSÞ-COZn k�2

ðRÞðRÞ-ðCOZnÞ2 þ CHO f ðRÞðRÞ-ðCOZnÞ2 � CHO k3

ðRÞðRÞ-ðCOZnÞ2 � CHO f ðRÞðRÞ-ðCOZnÞ2 þ CHO k�3

ðSÞðSÞ-ðCOZnÞ2 þ CHO f ðSÞðSÞ-ðCOZnÞ2 � CHO k3

ðSÞðSÞ-ðCOZnÞ2 � CHO f ðSÞðSÞ-ðCOZnÞ2 þ CHO k�3

ðRÞðSÞ-ðCOZnÞ2 þ CHO f ðRÞðSÞ-ðCOZnÞ2 � CHO k3

ðRÞðSÞ-ðCOZnÞ2 � CHO f ðRÞðSÞ-ðCOZnÞ2 þ CHO k�3

ðRÞðRÞ-ðCOZnÞ2 � CHO þ Zn f ðRÞðRÞ-ðCOZnÞ2 þ ðRÞ-COZn k4

ðSÞðSÞ-ðCOZnÞ2 � CHO þ Zn f ðSÞðSÞ-ðCOZnÞ2 þ ðSÞ-COZn k4

ðRÞðSÞ-ðCOZnÞ2 � CHO þ Zn f ðRÞðSÞ-ðCOZnÞ2 þ ðSÞ-COZn k4

ðRÞðSÞ-ðCOZnÞ2 � CHO þ Zn f ðRÞðSÞ-ðCOZnÞ2 þ ðRÞ-COZn k4
a n0 (CHO) = 0.10mmol; n0 (Zn) = 0.20mmol;V = 0.90 cm3;α = 1.0�
10�5; k1 = 7.0� 10�18 M�1 s�1; k2 = 800 M

�1 s�1; k�2 = 110 s
�1; k3 =

100 M�1 s�1; k�3 = 100 s�1; k4 = 8.0 � 105 M�1 s�1.
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steady-state approach is that the (absolute) rate of concentra-
tion change for minor species is much lower than for the major
species.48 In addition, the deterministic differential equations
were not integrated as a function of time, but using the con-
centration of CHO as the independent variable. The following
asymmetry function (ω) was introduced:

ω ¼
d½ðRÞ-COZn�

dt
d½ðSÞ-COZn�

dt

¼
k1 þ k2k3k4

½ðRÞ-COZn�2 þ α½ðRÞ-COZn�½ðSÞ-COZn�
k�2ðk�3 þ k4½Zn�Þ

k1 þ k2k3k4
½ðSÞ-COZn�2 þ α½ðRÞ-COZn�½ðSÞ-COZn�

k�2ðk�3 þ k4½Zn�Þ
ð4Þ

This asymmetry function basically gives the ratio of the forma-
tion rates for the two enantiomers of the final product and can
be derived using the steady-state approach for intermediates
(COZn)2 and (COZn)2�CHO (see the Supporting Informa-
tion for the detailed derivation). Only the concentrations of
reactants and products appear in this ω function, and using
it provides a simplified way to state the differential equations
following from the deterministic approach, which are shown in
eqs 5�7. This set of equations was integrated numerically by a
fourth-order Runge�Kutta method49 using the results obtained
in the Monte Carlo simulations as initial conditions.

d½ðRÞ-COZn�
d½CHO� ¼ � ω

1 þ ω
ð5Þ

d½ðSÞ-COZn�
d½CHO� ¼ � 1

1 þ ω
ð6Þ

d½Zn�
d½CHO� ¼ 1 ð7Þ

It was supposed that the mechanism shown in Table 1 could
interpret the experimentally observed distribution under the
actual conditions they were measured3 with a suitable parameter
set. To facilitate the search, a technique called symmetrization
was also introduced. Symmetry ensures the same ee must be for-
med with the same probability for both R and S enantiomers.19,37

The Monte Carlo simulation converges toward this symmetry
in a probabilistic fashion after a high number of repetitions
(convergence is roughly proportional to the square root of the
number of repetitions done). We have found a method to force
this symmetry into the calculation results: whenever a particular
repetition gave a certain final ee value, this was interpreted as two
different repetitions giving the same ee values, one favoring theR,
the other the S enantiomer (see Figure S4 in the Supporting
Information for further explanation). This technique made sure
that the predicted final distribution shows the required symmetry
independently of the number of repetitions carried out.

Parameters shown in the last row of Table 1 provided an
excellent interpretation of the experimental results3 as shown in
Figure 1 (average deviation, 4.3%; correlation coefficient, R2 =
0.9692; a correlation plot is given in Figure S4 in the Supporting
Information). A less favored, histogram-style graph based on the
same data is shown in Figure S5 in the Supporting Information.

It is noted that rate constant k1 has a very low value and k4 is large
so that a slow direct pathway could give a larger relative role
to the autocatalytic pathway. The small value of α implies highly
enantioselective autocatalysis. A full optimization for all six
parameters was not viable as the model proved to be heavily
overparametrized relative to the available experimental data; that
is, many different combinations of parameters could yield a simi-
larly good fit. Further model refinement is only possible with new
experimental data such as extensive kinetic measurements. Monte
Carlo simulations have shown that the distribution of enantiomers
for the first 2000 and 10 000 molecules is identical to the binomial
distribution, which is expected for simple racemization50,51

(Figure 2). This fact implies that the autocatalytic pathways are
not yet dominant at these low molecule numbers. This is under-
standable as the autocatalytic pathway involves dimerization of the
product molecule, which is an unlikely event at the very beginning
of the overall reaction.

’CONCLUSION

Accelerated Monte Carlo simulation combined with determi-
nistic continuation and symmetrization is able to handle large
chemical mechanisms within stochastic kinetics. The utility of
the method was demonstrated by predicting the enantiomer dis-
tribution based on an 18-step model of the Soai reaction and
finding a parameter set, which interprets experimental data. The
method opens the way to validate any future models of absolute
asymmetric synthesis by direct comparisons of model predictions
with measured data.

’ASSOCIATED CONTENT
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Figure 2. Theoretically predicted distribution of enantiomers in the
Soai reaction until the formation of 2000 or 10 000 molecules. Number
of repetitions: 1000. Both calculated distributions are indistinguishable
from a symmetric binomial distribution. xR: molar fraction of the R
enantiomer (=0.5 + 0.5 � ee).
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